Exercise 2.3: Ricker model

William Edwin (Bill) Ricker in the 50’s put forward the following model for describing a population of salmons:

$$ x_{t+1} = \exp \left[r \left(1 - \frac{x_t}{K} \right) \right] x_t $$

(1)

where \(r \) is an intrinsic growth rate and \(K \) is the carrying capacity of the environment. The exponential term takes into account the role of predators, the overcrowded conditions, etc.

Exercise: Find the fixed points and show that the route to chaos is the same as the one of the logistic map.

Solution: Contrary to the logistic map, the iterates of the Ricker’s map are always positive for every \(x_t \). The point \(x_t \) is a fixed point if \(x_t = x_{t+1} \), then the fixed points are \(x^* = 0 \) and \(x^* = K \). The derivative of the Ricker equation (1) is:

$$ m = \frac{df(x_t)}{dx_t} = \exp \left[r \left(1 - \frac{x_t}{K} \right) \right] \times \left[1 - \frac{r x_t}{K} \right] $$

Then:

If \(x^* = 0 \), it results \(m = \exp(r) \), greater than 1, so the fixed point is unstable.

If \(x^* = K \), it results \(m = 1 - r \). Now, however, one has to see whether it is \(0 < r < 2 \), in this case it is \(|1 - r| < 1 \), so the fixed point is globally and asymptotically stable. Otherwise, if it is \(r > 2 \), the fixed point is unstable.

The structure of the code is the same as that of the logistic map, with the function

```r
f.x<- function(x,r){exp(r*(1-(x/K)))*x}
```

#Ricker model: cobweb plot.
f.x<- function(x,r){exp(r*(1-(x/200)))*x}

function to draw the time plot
f.temp<-function(xinit,nstep,r){ # starting function f.temp
 xt<- numeric()
x<- xinit
 xt[1]<- x
 for(i in 2:nstep){
...
y <- f.x(x, r)
x <- y
xt[i] <- x
}
plot(xt, type="b", xlab="time", ylab="x(t)",
 cex.lab=1.7, cex.axis=1.3, lwd=2)
xt # comment to skip iterates
#
function to draw the cobweb plot
iter <- function(xinit, nstep, r){
 x <- xinit
 y <- f.x(x, r)
 segments(x, 0, x, y, lty=1, lwd=2)
 for(i in 1:nstep){
 points(x, y, pch=19, cex=1.5)
 segments(x, y, y, y, lty=1, lwd=2)
 x <- y
 y <- f.x(x, r)
 segments(x, x, x, y, lty=1, lwd=2)
 }
}
ending function iter
parameters and initial conditions
r <- 1.9
K <- 200
xinit <- 2
nstep <- 18
f.temp(xinit, nstep, r) # call up the time plot
preparation of the cobweb plot
windows()
plot(0, 0, type="n", xlim=c(0, 1000), ylim=c(0, 260), xlab="x(t)",
 ylab="x(t+1)",
 cex.lab=1.5, cex.axis=1.2)
plot of the function f.x
curve(f.x(x, r), from = 0, to = 1000, lty=5, col="blue", lwd=2, add=T)
segments(0, 0, 1000, 1000, lty=3, lwd=2, col="magenta") # bisector
iter(xinit, nstep, r) # call up the cobweb plot
segments(200, 0, 260, 200, lty=4, lwd=2, col="red")

Figure 1 (left) shows the oscillatory convergence to the fixed point \(x^* = K\).
When the number of fishes reaches the carrying capacity, the system is in the stationary state. Indeed, we see that the dot-dash line \(x_t = K\) and the dotted line \(x_{t+1} = x_t\) intersect the curve of equation (1) on the period-1 attractor \(x^* = K\).

Let us increase \(r\). We know what will happen. At \(r = 2\) the period-1 attractor becomes unstable and generates a period-2 attractor, and so on, up to the chaotic region as it is shown in Fig. 1 (right).
Fig. 1 Ricker map (1) with $K = 200$: cobweb plot, $r = 1.9$ (left), bifurcation diagram (right).

The code is as Code 2.4 Nonlinear logistic map: bifurcation diagram, with $f.x<- function(x,r)\exp(r*(1-(x/200)))*x$

Ricker map: bifurcation diagram

f.x<- function(x,r){exp(r*(1-(x/200)))*x}
ntrans<- 1000 # transient
rin<- 1.6
rfin<- 3.6
n<- 400 # number of iterations after the transient
nt< ntrans+n # total number of iterations
nr< 300 # number of r step
xinit<- 0.2
r< seq(rin,rfin,length=nr)
plot(0,0,type="n",xlim=c(rin,rfin),ylim=c(0,750),xlab="r",ylab="x(t)",
cex.lab=1.5,cex.axis=1.2)
for(i in r) { # starting loop on r values
 x<- xinit
 for(j in 1:nt) { # starting loop on the iterations
 y<- f.x(x,i)
 if(j > ntrans) points(i,y,pch='.',cex=3)
 x<- y
 } # ending loop on the iterations
} # ending loop on r values